Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 10407, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37369825

RESUMO

Whilst most individuals with SARS-CoV-2 infection have relatively mild disease, managed in the community, it was noted early in the pandemic that individuals with cardiovascular risk factors were more likely to experience severe acute disease, requiring hospitalisation. As the pandemic has progressed, increasing concern has also developed over long symptom duration in many individuals after SARS-CoV-2 infection, including among the majority who are managed acutely in the community. Risk factors for long symptom duration, including biological variables, are still poorly defined. Here, we examine post-illness metabolomic profiles, using nuclear magnetic resonance (Nightingale Health Oyj), and gut-microbiome profiles, using shotgun metagenomic sequencing (Illumina Inc), in 2561 community-dwelling participants with SARS-CoV-2. Illness duration ranged from asymptomatic (n = 307) to Post-COVID Syndrome (n = 180), and included participants with prolonged non-COVID-19 illnesses (n = 287). We also assess a pre-established metabolomic biomarker score, previously associated with hospitalisation for both acute pneumonia and severe acute COVID-19 illness, for its association with illness duration. We found an atherogenic-dyslipidaemic metabolic profile, including biomarkers such as fatty acids and cholesterol, was associated with longer duration of illness, both in individuals with and without SARS-CoV-2 infection. Greater values of a pre-existing metabolomic biomarker score also associated with longer duration of illness, regardless of SARS-CoV-2 infection. We found no association between illness duration and gut microbiome profiles in convalescence. This highlights the potential role of cardiometabolic dysfunction in relation to the experience of long duration symptoms after symptoms of acute infection, both COVID-19 as well as other illnesses.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Pneumonia , Humanos , SARS-CoV-2 , Hospitalização
3.
Sci Rep ; 11(1): 22433, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789795

RESUMO

The development of outcome measures that can track the recovery of reinnervated muscle would benefit the clinical investigation of new therapies which hope to enhance peripheral nerve repair. The primary objective of this study was to assess the validity of volumetric Magnetic Resonance Imaging (MRI) as an outcome measure of muscle reinnervation by testing its reproducibility, responsiveness and relationship with clinical indices of muscular function. Over a 3-year period 25 patients who underwent nerve transfer to reinnervate elbow flexor muscles were assessed using intramuscular electromyography (EMG) and MRI (median post-operative assessment time of 258 days, ranging from 86 days pre-operatively to 1698 days post- operatively). Muscle power (Medical Research Council (MRC) grade) and Stanmore Percentage of Normal Elbow Assessment (SPONEA) assessment was also recorded for all patients. Sub-analysis of peak volitional force (PVF), muscular fatigue and co-contraction was performed in those patients with MRC > 3. The responsiveness of each parameter was compared using Pearson or Spearman correlation. A Hierarchical Gaussian Process (HGP) was implemented to determine the ability of volumetric MRI measurements to predict the recovery of muscular function. Reinnervated muscle volume per unit Body Mass Index (BMI) demonstrated good responsiveness (R2 = 0.73, p < 0.001). Using the temporal and muscle volume per unit BMI data, a HGP model was able to predict MRC grade and SPONEA with a mean absolute error (MAE) of 0.73 and 1.7 respectively. Muscle volume per unit BMI demonstrated moderate to good positive correlations with patient reported impairments of reinnervated muscle; co- contraction (R2 = 0.63, p = 0.02) and muscle fatigue (R2 = 0.64, p = 0.04). In summary, volumetric MRI analysis of reinnervated muscle is highly reproducible, responsive to post-operative time and demonstrates correlation with clinical indices of muscle function. This encourages the view that volumetric MRI is a promising outcome measure for muscle reinnervation which will drive advancements in motor recovery therapy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/inervação , Regeneração Nervosa/fisiologia , Transferência de Nervo/métodos , Avaliação de Resultados em Cuidados de Saúde/métodos , Traumatismos dos Nervos Periféricos/cirurgia , Adulto , Idoso , Estudos de Casos e Controles , Articulação do Cotovelo/inervação , Articulação do Cotovelo/cirurgia , Eletromiografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/cirurgia , Estudos Prospectivos , Recuperação de Função Fisiológica/fisiologia , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
4.
Front Oncol ; 11: 620070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634034

RESUMO

OBJECTIV E: To summarise current evidence for the utility of interval imaging in monitoring disease in adult brain tumours, and to develop a position for future evidence gathering while incorporating the application of data science and health economics. METHODS: Experts in 'interval imaging' (imaging at pre-planned time-points to assess tumour status); data science; health economics, trial management of adult brain tumours, and patient representatives convened in London, UK. The current evidence on the use of interval imaging for monitoring brain tumours was reviewed. To improve the evidence that interval imaging has a role in disease management, we discussed specific themes of data science, health economics, statistical considerations, patient and carer perspectives, and multi-centre study design. Suggestions for future studies aimed at filling knowledge gaps were discussed. RESULTS: Meningioma and glioma were identified as priorities for interval imaging utility analysis. The "monitoring biomarkers" most commonly used in adult brain tumour patients were standard structural MRI features. Interval imaging was commonly scheduled to provide reported imaging prior to planned, regular clinic visits. There is limited evidence relating interval imaging in the absence of clinical deterioration to management change that alters morbidity, mortality, quality of life, or resource use. Progression-free survival is confounded as an outcome measure when using structural MRI in glioma. Uncertainty from imaging causes distress for some patients and their caregivers, while for others it provides an important indicator of disease activity. Any study design that changes imaging regimens should consider the potential for influencing current or planned therapeutic trials, ensure that opportunity costs are measured, and capture indirect benefits and added value. CONCLUSION: Evidence for the value, and therefore utility, of regular interval imaging is currently lacking. Ongoing collaborative efforts will improve trial design and generate the evidence to optimise monitoring imaging biomarkers in standard of care brain tumour management.

5.
Brain Commun ; 2(1): fcaa032, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32954290

RESUMO

Therapeutic trials of disease-modifying agents in neurodegenerative disease typically require several hundred participants and long durations for clinical endpoints. Trials of this size are not feasible for prion diseases, rare dementia disorders associated with misfolding of prion protein. In this situation, biomarkers are particularly helpful. On diagnostic imaging, prion diseases demonstrate characteristic brain signal abnormalities on diffusion-weighted MRI. The aim of this study was to determine whether cerebral water diffusivity could be a quantitative imaging biomarker of disease severity. We hypothesized that the basal ganglia were most likely to demonstrate functionally relevant changes in diffusivity. Seventy-one subjects (37 patients and 34 controls) of whom 47 underwent serial scanning (23 patients and 24 controls) were recruited as part of the UK National Prion Monitoring Cohort. All patients underwent neurological assessment with the Medical Research Council Scale, a functionally orientated measure of prion disease severity, and diffusion tensor imaging. Voxel-based morphometry, voxel-based analysis of diffusion tensor imaging and regions of interest analyses were performed. A significant voxel-wise correlation of decreased Medical Research Council Scale score and decreased mean, radial and axial diffusivities in the putamen bilaterally was observed (P < 0.01). Significant decrease in putamen mean, radial and axial diffusivities over time was observed for patients compared with controls (P = 0.01), and there was a significant correlation between monthly decrease in putamen mean, radial and axial diffusivities and monthly decrease in Medical Research Council Scale (P < 0.001). Step-wise linear regression analysis, with dependent variable decline in Medical Research Council Scale, and covariates age and disease duration, showed the rate of decrease in putamen radial diffusivity to be the strongest predictor of rate of decrease in Medical Research Council Scale (P < 0.001). Sample size calculations estimated that, for an intervention study, 83 randomized patients would be required to provide 80% power to detect a 75% amelioration of decline in putamen radial diffusivity. Putamen radial diffusivity has potential as a secondary outcome measure biomarker in future therapeutic trials in human prion diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...